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The classical Hopf bifurcation criterion is stated in terms of the properties of eigenvalues. In this paper, a
criterion without using eigenvalues is proposed for maps of arbitrary dimension. The parameter mechanism of
Hopf bifurcation may be explicitly formulated on the basis of the criterion. A numerical example demonstrates
that the proposed criterion is preferable to the classical Hopf bifurcation criterion in theoretical analysis and
practical applications.
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Hopf bifurcation is a common phenomenon in physical,
chemical, biological, electronic, and other engineering fields
�1�. The criteria of Hopf bifurcation for maps consist of the
eigenvalue assignment, the transversality condition, and the
nonresonance �or resonance� condition �2�. The two former
conditions determine the existence of a Hopf bifurcation, and
the last is involved in the type of bifurcation solutions. The
classical Hopf bifurcation criterion �2� is repeated as follows.

Consider an n-dimensional map xk+1= f��xk� where xk+1,
xk�Rn, are the state vectors, k is iterative index, and ��R is
a parameter. Assume that f� has a fixed point x0 and satisfies
the following.

�C1� Eigenvalue assignment. The Jacobian matrix
Dxk

f��x0� has a pair of complex conjugate eigenvalues �1���
and �̄1��� with ��1��0��=1 at �=�0 and the others � j���,
j=3, . . . ,n, with �� j��0���1.

�C2� Transversality condition d��1��0�� /d��0.
�C3� Nonresonance condition �1

m��0��1 or resonance
condition �1

m��0�=1, m=3,4 ,5 , . . ..
Then, a Hopf bifurcation occurs at �=�0. The type and

stability of bifurcation solutions depend on the condition
�C3� and the nonlinear property of map f�.

Detecting the existence of a Hopf bifurcation is one of the
oldest nonlinear topics that remain prevalent. The main idea
in the literature is to directly compute all eigenvalues of the
Jacobian matrix Dxk

f��x0� and check the classical criterion
�C1�–�C3� which are stated in terms of the properties of ei-
genvalues. In each step of computations, the parameter � is
preset or speculated such that the Jacobian matrix Dxk

f��x0�
becomes a constant matrix. In this case, the eigenvalues of
the constant matrix Dxk

f��x0� are computable in general.
However, for practical physical systems, Dxk

f��x0� may in-
volve certain singularities such as a sparse matrix, which
introduce numeric inaccuracies into eigenvalue computa-
tions.

In practical engineering studies of the dynamic behavior
of physical systems, it is often desirable to reveal the multi-
parameter mechanism of the bifurcation. Subject to the ei-

genvalue computation point by point in the parameter plane
or hyperplane, it is very difficult to apply the criterion �C1�–
�C3� to serve this purpose. For example, Chen and co-
workers �3� presented the seminal work on the creation of a
Hopf bifurcation with certain desired dynamical properties
via control. In contrast to the studies of detecting a Hopf
bifurcation, the remarkable property of this new topic is that
the Jacobian matrix Dxk

f��x0� always involves a control pa-
rameter vector K �as usual, the higher dimensional of the
system, the more components of K� to be determined such
that the matrix Dxk

f��x0 ;K� is not a constant matrix. Further-
more, analytical expressions for all eigenvalues with respect
to K or �, in general, are unavailable for a high dimensional
nonconstant matrix. These properties make it a nontrivial
task to design the Hopf bifurcation depending on the crite-
rion �C1�–�C3�.

In this paper, a criterion of Hopf bifurcation is proposed
for any map in a general sense. Without using eigenvalues,
the criterion is formulated using a set of simple equalities or
inequalities that consist of the coefficients of the character-
istic equation derived from the Jacobian matrix. In a com-
parison of the classical Hopf bifurcation criterion, the newly
derived criterion is more efficient in detecting the existence
of Hopf bifurcation for high dimensional maps as the result
of eliminating singularities when computing eigenvalues.
Moreover, even if the Jacobian matrix involves some un-
known parameters, the relationship between the unknown
parameters and the critical bifurcation constraint conditions
is explicitly expressed. This property completely overcomes
the difficulty in the existing results �3–5� of the creation of
Hopf bifurcations via control.

In order to express the criterion, assume first that at
the fixed point x0 the characteristic polynomial of an n-
dimensional map f� takes the form

p���� = �n + a1�n−1 + ¯ + an−1� + an, �1�

where aj =aj�� ,K�, j=1, . . . ,n, � is the bifurcation param-
eter, and K is the control parameter or the other to be deter-
mined. Consider the sequence of determinants �0

±�� ,K�=1,
�1

±�� ,K� , . . ., �n
±�� ,K�, where*Electronic address: wenguilin@yahoo.com.cn
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� j
±��,K� = ��

1 a1 a2 ¯ aj−1

0 1 a1 ¯ aj−2

0 0 1 ¯ aj−3

¯ ¯ ¯ ¯ ¯

0 0 0 ¯ 1
� ±�

an−j+1 an−j+2 ¯ an−1 an

an−j+2 an−j+3 ¯ an 0

¯ ¯ ¯ ¯ ¯

an−1 an ¯ 0 0

an 0 ¯ 0 0
�� , j = 1, . . . ,n . �2�

Now the following conditions �H1�–�H3� can be formulated
to establish a criterion of Hopf bifurcation.

�H1� Eigenvalue assignment �n−1
− ��0 ,K�=0, p�0

�1��0,
�−1�np�0

�−1��0, �n−1
+ ��0 ,K��0, � j

±��0 ,K��0, j=n−3,n
−5, . . . ,1 �or 2�, when n is even �or odd, respectively�.

�H2� Transversality condition d�n−1
− ��0 ,K� /d��0.

�H3� Nonresonance condition cos�2� /m��� or reso-
nance condition cos�2� /m�=�, where m=3,4 ,5 , . . . and �
=1−0.5p�0

�1��n−3
− ��0 ,K� /�n−2

+ ��0 ,K�.
For map f�, if �H1�–�H3� hold, then Hopf bifurcation oc-

curs at �0.
Proof. If the conditions �H1�–�H3� are equivalent to the

conditions �C1�–�C3�, then they are a criterion of Hopf bi-
furcation for maps. At first, we highlight three steps to show
that �H1� yields �C1�. We also verify that there exists one and
only pair of eigenvalues that are inverse with respect to the
unit circle, show that the sole inverse pair lies on the unit
circle and is complex conjugate, and ascertain that the other
eigenvalues lie inside the unit circle. It should be noted that
the determinant �n−1

− �� ,K� holds the following result �6�:

�n−1
− ��,K� = �− 1�n�n−1�/2 	

j�m

1,. . .,n

�1 − � j�m� , �3�

where � j and �m are the roots of p����=0. Thus,
�n−1

− ��0 ,K�=0 guarantees at least a pair of eigenvalues that
are on the unit circle or inverse points with respect to the unit
circle, which are denoted by h and 1/h. We then rewrite
p�0

��� as

p�0
��� = ��2 − �h + 1/h�� + 1�p̃�0

��� , �4�

where p̃�0
���=�n−2+b1�n−3+ ¯ +bn−3�+bn−2. For the coef-

ficients bm and am in Eq. �1�, one obtains the relationship

am = bm − �h + 1/h�bm−1 + bm−2, �5�

where m=1, . . . ,n, b0=1, and bj =0 if j� �n−2� or j�0. A

set of determinants �̃ j
±��0 ,K�, j=n−3,n−5, . . . ,1 or 2, of

p̃���� is defined similar to Eq. �2�. One then substitutes Eq.
�5� into � j

±��0 ,K�, j=n−3,n−5, . . . ,1 or 2, and makes the
elementary row operations for each row of � j

±��0 ,K� as fol-
lows: starting from the last row of � j

±��0 ,K�, multiply the
mth row by �h+1/h� and −1, and add them to the �m−1�th
and �m−2�th rows �if any�, respectively, to obtain

� j
±��0,K� = �̃ j

±��0,K�, j = n − 3,n − 5, . . . ,1 or 2. �6�

From �H1� and Eq. �6�, one can easily obtain �̃n−3
− ��0 ,K�

�0. Furthermore, the relationship �3� also holds for

�̃n−3
− ��0 ,K� with a minor modification. Thus, p̃�0

��� has no
inverse eigenvalues with respect to the unit circle. In other
words, h and 1/h are the sole pair of inverse eigenvalues for
p�0

���. If either h or 1/h is outside the unit circle, then at
least one determinant among � j

±��0 ,K�, j=n−1,n−3, . . . ,1
or 2, is negative �7,8�. But this contradicts our assumption
�H1�. One thus can ascertain that both h and 1/h are on the
unit circle. In view of p�0

�1��0 and �−1�np�0
�−1��0, it is

clear that p�0
��� has no real eigenvalue on the unit circle.

This implies that h and 1/h are a pair of complex conjugate

eigenvalues—that is, h=	+ i
 and 1/h= h̄ with 	2+
2=1
and �	��1. In what follows, we show that the other eigen-
values are inside the unit cycle. The necessary and sufficient
condition �7,9� that the roots of p̃�0

���=0 lie inside the unit
circle is given by

p̃�0
�1� � 0, �− 1�n−2p̃�0

�− 1� � 0, �̃ j
±��0,K� � 0,

j = n − 3,n − 5, . . . ,1 or 2. �7�

Since ��h+1/h��= �2	��2, one can see from Eq. �4� that the
signs of p̃�0

�1� and �−1�n−2p̃�0
�−1� are the same as those of

p�0
�1� and �−1�np�0

�−1�, respectively. Furthermore, substi-
tuting Eq. �6� into �H1�, it follows from Eq. �7� that all roots
of p̃�0

���=0 lie inside the unit circle. Therefore, the condi-
tion �H1� leads to �C1�.

If the condition �C1� holds, p�0
��� can be expressed as

Eq. �4� where �h+1/h�=	 and �	��1. By applying the
above procedures, inversely, one can show that the condition
�C1� yields �H1� except for �n−1

+ ��0 ,K��0. For example, by
substituting Eq. �5� into �n−1

− ��0 ,K� and making the elemen-
tary row operations in the derivation of Eq. �6�, the first and
third rows of �n−1

− ��0 ,K� become equal or else the compo-
nents of the first row all are zero such that

�n−1
− ��0,K� = 0. �8�

In order to verify �n−1
+ ��0 ,K��0, as above, one obtains

�n−2
± ��0,K� = �̃n−2

± ��0,K� . �9�

The following three formulations proven in �7� are needed to
serve our purpose:
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�̃n−2
+ ��0,K� = p̃�0

�1��̃n−3
− ��0,K�,

�̃n−2
− ��0,K� = �− 1�n−2p̃�0

�− 1��̃n−3
− ��0,K�

�10�

and

�n−3
+ ��0,K��n−1

− ��0,K� + �n−3
− ��0,K��n−1

+ ��0,K�

= 2�n−2
+ ��0,K��n−2

− ��0,K� . �11�

Substituting Eqs. �6�–�10� into Eq. �11�, �n−1
+ ��0 ,K��0 is

readily ascertained. Therefore, the condition �H1� is equiva-
lent to �C1�.

Next, by differentiating �n−1
− �� ,K� in Eq. �3� with respect

to �, we have

d�n−1
− ��,K�/d� = �− 1�n�n−1�/2 


l�q

1,. . .,n ��l��q / ��l�q − 1�

� 	
j�m

1,. . .,n

�1 − � j�m� + �l�q� / ��l�q − 1�

� 	
j�m

1,. . .,n

�1 − � j�m�� , �12�

where �l� denotes the derivative of �l with respect to �, so is
�q�. The equivalence of �H1� to �C1� implies that at �0 the
characteristic equation p�0

���=0 has one and only pair of

complex conjugate eigenvalues �1 and �2= �̄1 on the unit
circle, satisfying ��1�2−1�=0, such that 	 j�m

1. . .n�1
−� j�m� / ��1�2−1��0. Note that the sum of the right-hand
side of Eq. �12� has one and only term without ��1�2−1�.
Thus we get

d�n−1
− ��0,K�/d� = 2�− 1�n�n−1�/2d��1��0�� / d�

� 	
j�m

1,. . .,n

�1 − � j�m�/��1�2 − 1� . �13�

From the preceding identity, one can ascertain that the con-
dition �H2� is equivalent to �C2�.

Finally, a tactical method is used to show the equivalence
of �H3� to �C3�. Assume that �1��0�=	+ i
 and ��1��0��=1.
Note that �1

m��0��1 �respectively, �1
m��0�=1� corresponds

to 	�cos�2� /m� �respectively, 	=cos�2� /m�� owing to
��1��0��=1. Furthermore, it is seen from p�0

���= ��2−2	�

+1�p̃�0
��� that 	=1−0.5p�0

�1� / p̃�0
�1�. Substituting Eqs. �6�

and �9� into Eq. �10�, one can easily obtain that p̃�0
�1�

=�n−2
+ ��0 ,K� /�n−3

− ��0 ,K�. Therefore, �H3� is equivalent to
�C3�. �

Note that the proposed criterion is applicable for any map
in a general sense, such as the Poincaré map of impact vi-
brators �10�, the A-switching map describing dc/dc convert-
ers �10�, a four-dimensional revisable map �10�, the three-
order Rodriguez-Vazquez map �10�, the well-known bounce
ball map �2�, and coupled map lattices �11�. Grassi and
Miller �12� studied the electronic implement of the general-
ized Hénon map by analog circuits and applied it to a chaos

synchronization experiment. To show that the proposed cri-
terion is very helpful in the investigation of the parameter
mechanism of the bifurcation, consider the following param-
eter matrix:

Dxk
f��x0� =�

0 − 0.5 − 0.9 − 0.1 0.8

1 0 0 0 0

0 1 0 0 0

0 �1 1 0 �2

0 1 0 0 − 1
� , �14�

where �1� �−15,10� and �2� �−15,5� are two uncertain pa-
rameters or control parameters. The matrix �14� is the Jaco-
bian one of the generalized Hénon map under washout-filter-
aided control �12�, with a minor modification for simplicity.
The conditions �H1�–�H3� are described in Fig. 1. The blank
region denotes the parameter domain in which all inequali-
ties in �H1� hold whereas in the gray region at least one
inequality fails. In the open domain surrounded with the
solid arcs AB and BC and the dotted arc CA, one has
�n−1

− ��0 ,K��0 such that the fixed point x0 is local stable
according to the stability criterion �7�. The open arcs AB and
BC �the heavy solid lines� consist of the parameter points
that satisfy �n−1

− ��0 ,K�=0 as well as the inequality con-
straints in �H1�. Except for the points T1 and T2, they repre-
sent the critical parameter set of the Hopf bifurcation. The
point T1 �respectively, T2� refers to the one at which �H2�
fails for �1 �respectively, �2�. At point B, �H2� fails for both
�1 and �2. The loss of stability of the fixed point x0 caused

FIG. 1. The open arcs AB and BC �the heavy solid lines� in the
blank region, except for the points T1 and T2, represent the critical
parameter set of Hopf bifurcation. The points R3, R4, R5, and R6

represent the resonance points with �1
m��0�=1, m=3,4 ,5 ,6, respec-

tively. The open blank region surrounded with the solid arcs AB and
BC and the dotted arc CA is the stable parameter domain of the
fixed point x0.

CRITERION TO IDENTIFY HOPF BIFURCATIONS… PHYSICAL REVIEW E 72, 026201 �2005�

026201-3



by Hopf bifurcation is not sensitive to the parameters that are
very close to these points. When our objective is to design
Hopf bifurcation into the system, an appreciate parameter
setting should be away from these points. The points R3, R4,
R5, and R6 represent the resonance points with �1

m��0�=1,
m=3,4 ,5 ,6, respectively. To design Hopf bifurcation in the
nonresonance cases, the bifurcation parameters should be on
the open arcs AB and BC but be away from these resonance
points. If one attempts to design Hopf bifurcation in the case
of a kind of resonance, one of these resonance points is ex-
actly required in the choice of parameters. The mechanism of
the uncertain parameters in Hopf bifurcations is clearly
shown in Fig. 1. However, based on the classical Hopf bifur-
cation criterion described by �C1�–�C3�, it is a nontrivial task
to systematically demonstrate the information. For example,

depending on eigenvalue computation by scanning the pa-
rameter space point by point, we have to keep our fingers
crossed to find the open arcs AB and BC that satisfy assump-
tion �C1�.

In summary, a Hopf bifurcation criterion without using
eigenvalues has been proposed. By applying it, the parameter
mechanism of Hopf bifurcation may be explicitly formu-
lated. The criterion is more convenient and efficient for ana-
lyzing Hopf bifurcations than the classical Hopf bifurcation
criterion, especially for high dimensional maps with uncer-
tain parameters.
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